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Abstract 
 
We propose a novel approach to automatic machine translation evaluation based on 

paraphrase identification.  The quality of machine-generated output can be viewed as the 
extent to which the conveyed meaning matches the semantics of reference translations, 
independent of lexical and syntactic divergences.  This idea is implemented in linear 
regression models that attempt to capture human judgments of adequacy and fluency, 
based on features that have previously been shown to be effective for paraphrase 
identification.  We evaluated our model using the output of three different MT systems 
from the 2004 NIST Arabic-to-English MT evaluation.  Results show that models 
employing paraphrase-based features correlate better with human judgments than models 
based purely on existing automatic MT metrics. 
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1 Introduction 
While human evaluation of machine translation (MT) output remains the most 

reliable method to assess translation quality, it is a costly and time consuming process.  
The development of automatic MT evaluation metrics enables the rapid assessment of 
system output.  By providing immediate feedback on the effectiveness of various 
techniques, these metrics have guided machine translation research and have facilitated 
rapid advances in the state of the art.  In addition, automatic evaluation metrics are useful 
in comparing the performance of multiple MT systems on a given translation task, as 
demonstrated by the DARPA TIDES research program.  Since automatic evaluation 
metrics are meant to serve as a surrogate for human judgments, their quality is 
determined by how well they correlate with assessors’ preferences and how accurately 
they predicts human judgments. 

Although current methods for automatically evaluating MT output do not require 
humans to assess individual system output, humans are nevertheless needed to generate a 
number of “reference translations”.  The quality of machine-generated translations is 
determined by automatically comparing system output against these references.  Despite 
numerous variations, which we will discuss in the next section, all current automatic 
evaluation metrics are based on the simple idea of matching substrings (i.e., n-grams) 
from machine output with substrings from the reference translations.  This substring 
matching approach has obvious drawbacks: it does not account for combinations of 
lexical and syntactic differences that might occur between a perfectly fluent and 
accurately-translated machine output and a human reference translation (beyond 
variations already captured by the different reference translations themselves). Moreover, 
the set of human reference translations is unlikely to be an exhaustive inventory of “good 
translations” for any given foreign language sentence.  Therefore, it would be highly 
desirable to have an MT evaluation metric capable of automatically determining 
equivalences in meaning without relying on exact substring matches. 

We propose a novel approach to automatic machine translation evaluation based on 
paraphrase identification.  The quality of machine-generated output can be viewed as the 
extent to which the conveyed meaning matches the semantics of the reference 
translations, independent of substrings they may share.  In short, all paraphrases of 
human-generated references should be considered “good” translations.  We have 
implemented this idea in a statistical model of human preferences that combines features 
from existing automatic evaluation metrics with features that have proven to be useful in 
the paraphrase identification task.  Results show that exploiting paraphrase identification 
techniques results in a statistically significant improvement in correlation with human 
judgments at the sentence level, measured against baselines that use only existing 
automatic metrics. 

Some might argue that, at current levels of MT system performance, greater fidelity 
to human judgments is beside the point ― perhaps systems still have ample room for 
improvement before there is added value in features not based on substring matches or in 
models that go significantly beyond n-gram overlap with reference translations.  
However, recent developments in MT evaluation point to a greater emphasis on human 
preferences.  In the new DARPA GALE program (DARPA, 2005), MT evaluation will be 
performed by measuring the translation error rate (TER, Snover et al., 2005) between a 
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system’s output hypothesis H and the string H’ created by a human who corrects the 
machine output to turn it into an acceptable translation.  TER is a variant of string edit 
distance inspired by the idea of modeling how a human would turn system output into the 
“closest” acceptable translation.  While this human-in-the-loop use of TER is a positive 
development, allowing for variations not adequately captured by substring matches 
against reference translations, it introduces a dilemma: systems can no longer be tested 
frequently in development or automatically optimized using the same objective function 
that will be used for their evaluation.  As a remedy, we believe that it is important to 
develop models of translation quality that can be computed automatically, like current n-
gram based metrics, but which better approximate what will be taking place during the 
human-in-the-loop evaluation task.  This task can be conceptualized, abstractly, as an 
iterative process that includes formulating a representation of the correct translation, 
assessing the extent to which the system hypothesis conveys the same meaning, and 
modifying the hypothesis so that it better conveys the intended meaning.   Since a central 
part of this task closely resembles judging the “goodness” of paraphrase, we hypothesize 
that our approach, which incorporates features known to be useful for identifying 
paraphrases, will lead to better automatic metrics. 

2 Related work 
MT evaluation is a complex task; no single metric, manual or automatic, can 

adequately capture all factors that contribute to a good translation.  Evaluation criteria 
might depend on translation domain, task, and users involved.  FEMTI (Framework for 
the Evaluation of Machine Translation), a recent effort to group various existing metrics 
into a unifying framework, proposes two taxonomies, one relating an MT system’s use 
context to a quality model, and the other relating the quality model to appropriate metrics 
(Hovy et al., 2002). 

Despite the challenges in quantifying a “good” translation, researchers have made 
substantial progress in automatic MT evaluation.  The most successful metrics currently 
in use are based on substring (i.e., n-gram) matches between machine output and one or 
more human-generated reference translations at the sentence level.  This simple idea is 
implemented in the BLEU metric (Papineni et al., 2002) and the closely-related NIST 
metric (Doddington, 2002), both of which have been shown to correlate with human 
judgment when applied on multiple-sentence testsets (entire documents or sets of 
documents).  Despite widespread adoption, these metrics present several drawbacks, 
which MT researchers have tried to address.  For instance, the team at the 2003 Johns 
Hopkins Summer Workshop on Syntax for Statistical MT noticed that BLEU is 
insensitive to syntactic changes (Och et al., 2003); the METEOR metric (Banerjee et al., 
2005), discussed further below, was developed to specifically address BLEU’s emphasis 
on n-gram precision, which does not appropriately measure the degree to which a 
machine-generated translation captures the entire content of the source sentence.  Another 
weakness of the abovementioned MT evaluation metrics is that they do not correlate well 
with human judgment at the sentence level, despite correlations over large test sets (Blatz 
et al., 2003; Och et al., 2003; Kuleska et al., 2004).  Clearly, automatic metrics with high 
sentence-level correlation are desirable because they provide a finer-grained assessment 
of translation quality.  In particular, they can guide MT system development by offering 
feedback on sentences that are particularly challenging. 
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Evaluation of machine-translated output has been viewed as a sentence-level 
classification problem.  Blatz et al. (2004) employ a feature-based machine learning 
approach to assess the confidence estimate of MT output both at the sentence level and at 
the word level.  Their data consists of (x, c) pairs, where x is a feature vector representing 
the source/target-candidate translation and c is a correctness score.  The correctness score 
is set to different thresholds of word error rate or the NIST score, depending on the 
experiment; the features are derived either from the base MT system (such as translation 
model probability, number of jumps in word-to-word alignment, language model, IBM 
Model 1 translation probabilities) or are derived from external sources (such as a 
semantic similarity metric based on WordNet).  While sharing a supervised feature-based 
machine learning approach, this work differs from that of Blatz et al. in the choice of 
features; we utilize linguistically-motivated features useful for paraphrase identification, 
and model human translation quality judgments directly. 

Similarly, Kuceska et al. (2004) view MT output evaluation as a classification 
problem.  In an attempt to eliminate the need for human judgments, they train a support 
vector machine (SVM) to distinguish machine-generated translations from human 
translations.  The continuous “confidence” probability generated by the SVM is used as a 
measure of translation quality.  Kuceska et al. use features based on existing evaluation 
metrics: n-gram precision, ratio of hypothesis length to reference length, word error rate, 
and position-independent word error rate. 

An attempt at going beyond n-gram matching is made with the METEOR metric 
(Banerjee et al., 2005), which is based on a word-to-word alignment between the 
machine-generated translation and the reference translation.  This metric assigns a score 
equal to the harmonic mean of unigram precision (that is, the proportion of matched n-
grams out of the total number of n-grams in the evaluated translation) and unigram recall 
(that is, the proportion of matched n-grams out of the total number of n-grams in the 
reference translation).  METEOR also includes a fragmentation penalty that accounts for 
how well-ordered the matched unigrams of the machine translation are with respect to the 
reference.  The alignment between machine translation and reference translation is 
obtained through mapping modules that apply sequentially, linking unigrams that have 
not been mapped by the preceding modules: the ‘exact’ module maps words that are 
exactly the same; the ‘porter-stem’ module links words that share the same stem; the 
‘WordNet synonymy’ module maps unigrams that are synonyms of each other. 

The mapping modules in METEOR are similar to some of the features used in our 
study.  However, we go beyond word-to-word mappings to features that match multiple 
content words in the system hypothesis and the reference translation (approximating 
dependency relations).  Moreover, we do not impose any brevity penalty, because 
multiple strings can share the same meaning, but be of different lengths. 

A syntax-based approach to MT evaluation is explored in Liu et al. (2005); they  
propose two metrics, one based on the number of subtrees common to a hypothesis and a 
reference translation, and the second one computing the fraction of head-word chains 
occurring  in both machine output and reference translation. Their technique is shown to 
improve correlations with fluency scores. Our work also captures dependency relations 
through the “composite” features, as shown in Section 3.2, but does not require the 
existence of a parser.  
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Recently, Tate et al. (2005) have developed a regression model for task-based 
performance in an information extraction task, using an automatic intrinsic metric derived 
from BLEU; the approach has the potential to replace costly task-based evaluations by 
taking advantage of intrinsic measures that can be computed automatically.  Their work 
represents a potential consumer for improved intrinsic metrics of the kind we propose 
here. 

 3 Methods  
Our basic approach for modeling human translation quality employs a linear 

regression model trained on (x, h) pairs, where x is a feature vector representing 
corresponding sentence pairs (between machine-translated output and human references), 
and h is a human evaluation score (see below).  A linear regression model was 
appropriate for this task because the dependent variable has a normal distribution and can 
be treated as continuous.  In addition, each feature value in our data set has a roughly 
linear relation with h.  To evaluate each model, we compute its Pearson’s r correlation 
with true human judgments. 

3.1 Data 
Data for our experiments consist of 347 sentences from the DARPA/TIDES 2004 

Arabic-to-English MT evaluation testsets, translated by three different MT systems 
(identified as arf, ari, arp).  These three systems were chosen because they represent high, 
medium, and low performing translation systems as measured by BLEU in the NIST 
2004 evaluation.  For each of the system’s output, two human annotators have manually 
assigned a score from 1 to 5 for fluency and adequacy; we used the average of the two 
annotators’ scores.  Thus, we have a total of 1041 training samples.  There are four 
reference translations available for this data set.  For this study, we created three separate 
models that attempt to capture fluency, adequacy, and the average of the two values. 

3.2 Features 
Because our approach views automatic machine translation evaluation as paraphrase 

identification, we employed features previously shown to be useful for that task.  These 
features attempt to go beyond simple n-gram matching to account for lexical and 
syntactical variations between machine and reference output.  In particular, we have 
implemented the features proposed in (Hatzivassiloglou et al., 1999; Hatzivassiloglou et 
al., 2001), which were used to detect semantic similarity between sentence-sized text 
segments.  In their work, a distinction is made between features that compare single terms 
from two sentences, called ‘primitive’ features, and those that match word pairs to word 
pairs, called ‘composite’ features.  The following ‘primitive’ features are based on word-
to-word correspondences between a machine-translated output and a reference 
translation: 

 
• Stemmed words co-occurrence (Wrd): matching of tokens generated by the Porter 

stemmer. 
• Noun phrases (NP): matching of unstemmed noun phrase heads.  Noun phrase 

bracketing is accomplished by matching regular expression patterns of part-of-speech 
tags over output generated by the Brill tagger. 
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• WordNet synsets (WnSyn): matching of words that appear in the same WordNet 2.1 
synset (Miller et al., 1990; Fellbaum, 1999).  No word sense disambiguation is 
performed. 

• Verbs semantic classes (Verb): matching of verbs that share the same semantic 
class, as defined by Levin (1993). 

• Proper names of person, place, organization (PNP): matching of proper names 
based on part-of-speech tags. 
 
The ‘composite’ features establish correspondences between word pairs from a 

machine translation and a reference translation, where the word pairs are identified by the 
‘primitive’ features.  These ‘composite’ features roughly capture dependency relations: 

 
• Order (Order): matches pairs of ‘primitive’ features if they occur in the same 

relative order in both sentences. 
• Distance (D2, D3, D4, D5): matches pairs of ‘primitive’ features if they occur within 

a window of 2-5 words. 
 
The actual values assigned to the ‘primitive’ and ‘composite’ features correspond to 

the number of matches between the machine output and the reference translation; not all 
reference translations were taken into account in our current experiments, but only the 
one which has the least number of translation error according to TER.  To avoid bias in 
favor of longer segments, each feature value is normalized by the length of the sentences.  
Following (Hatzivassiloglou et al., 1999), the feature values of two sentences A and B are 
divided by 

 
 )()( BlengthAlength × .  

 
In our experiments, we also included features based on existing MT evaluation 

metrics: 
 

• BLEU score: the most commonly-used automatic MT evaluation metric today; see 
Section 2 for more details.  

• TER (translation error rate): this recently-introduced metric (Snover et al., 2005) is 
based on the number of edits (insertions, deletions, substitutions, shifts) it takes a 
human to convert the system output into a correct translation.  Unlike Word Error 
Rate (WER), another automatic MT evaluation metric (Vidal, 1997; Tillmann et al., 
1997), TER allows word shifts: it treats shifts of contiguous multi-word sequences as 
a single operation. Similarly to NIST and BLEU, TER is defined for multiple 
references. 

• METEOR score: an automatic MT evaluation metric based on a combination of 
unigram-precision and unigram-recall with the reference translations (Banerjee et al., 
2005), as discussed in Section 2. 
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3.3 Models 
We constructed three separate models, one for human-rated adequacy, one for 

fluency, and one for the average of both.  For each model, we experimented with the 
following feature combinations: BLEU ± paraphrase, TER ± paraphrase, METEOR ± 
paraphrase, BLEU + TER ± paraphrase, BLEU + TER + METEOR ± paraphrase, where 
“paraphrase” indicates that the paraphrase features were included in the regression model. 

Our models were evaluated by measuring the sentence-level Pearson’s r correlation 
between model output and true human judgments over the entire data set.  In computing 
correlations, it is acceptable not to have a training/test division because we are currently 
more concerned about modeling human preferences instead of developing a predictive 
MT evaluation metric. 

In addition to the more widely known Fisher’s z test for assessing the statistical 
significance of correlation differences, we employ Meng, Rosenthal and Rubin’s z 
transformation (MRR) (Meng et al., 1992).  Fisher’s z test is only appropriate when 
comparing two independent samples, a condition not met here: we are comparing the 
correlation between one pair of variables and a second, overlapping pair of variables.1  
Moreover, our data come from the same set of translations for all variables.  Fisher’s z 
results are reported only to maintain consistency with related work in the literature. 

4 Results  
Table 1 shows the Pearson’s r correlation coefficients of each model with human 

judgments of adequacy, fluency, and an average of both values.  Relative improvements 
in correlation over a BLEU baseline are shown, as well as the statistical significance of 
the gains. 
 

Model Adequacy Fluency Average 
B .495 .392 .477 
T .542 (+9.5%) ‡ .440 (+12.2%) ‡ .529 (+10.9%) ‡ 
M .627 (+26.7%) †‡ .491 (+25.3%) †‡ .602 (+26.2%) †‡ 
BP .609 (+23.0%) †‡ .488 (+24.5%) †‡ .590 (+23.7%) †‡ 
TP .617 (+24.6%) †‡ .490 (+25.0%) †‡ .600 (+25.8%) †‡ 
MP .637 (+28.7%) †‡ .506 (+29.1%) †‡ .616 (+29.1%) †‡ 
BT .554 (+11.9%) ‡ .446 (+13.8%) ‡ .538 (+12.8%) ‡ 
BTP .617 (+24.6%) †‡ .499 (+27.3%) †‡ .600 (+25.8%) †‡ 
BTM .640 (+29.3%) †‡ .508 (+29.6%) †‡ .618 (+29.6%) †‡ 
BTMP .647 (+30.7%) †‡ .513 (+30.9%) †‡ .624 (+30.8%) †‡ 

 
Table 1. Pearsons’ r correlation and relative improvement over BLEU baseline for 
each model of human judgments (adequacy, fluency, and average of both). † indicates 
significance at the 99% level by the Fisher’s z test, ‡ indicates significance by the 
MRR z test. (B = BLEU, T = TER, M = METEOR, P = paraphrase) 

 

                                                 
1 An example of overlapping pairs of variables is the correlation between BLEU and human judgment 

(HJ) and the correlation between TER and HJ, where HJ is common to the two variable pairs. 
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A comparison of models with and without paraphrase-based features is found in 
Table 2.  The introduction of paraphrase-based features results in a statistically-
significant improvements in correlation for BLEU and TER baseline models.  Based on 
this current data set, we have insufficient evidence to conclude that the paraphrase-based 
features have any effect on the METEOR models or models that incorporate BLEU, 
TER, and METEOR.  A more thorough evaluation with a larger data sample and cross-
validation is currently being conducted, together with an error analysis to determine how 
the paraphrase-based features help and where they fail to enhance the model with respect 
to the baseline metrics. 
 

 Adequacy Fluency Average 
B vs. BP +23.0% †‡ +24.5% †‡ +23.7% †‡ 
T vs. TP +13.8% †‡ +11.4% ‡ +13.4% †‡ 
M vs. MP +1.6% +3.1% * +2.3% 
BTM vs. BTMP +1.1% +1.0% +1.0% 

 
Table 2. Statistical significance of correlation improvements for all paraphrase-based 
models with respect to their respective baselines. † indicates significance at the 99% 
level by the Fisher’s z test, * indicates significance at 95% level by the MRR z test, ‡ 

indicates significance at the 99% level by the MRR z test. 
 
To assess the contribution of each feature, we introduced each independent variable 

into the model stepwise, for all experiments reported.  This means that at each step, of the 
independent variables that have not been added to the model, the one with the smallest F 
statistics is added; and at each step, of the variables already in the model, those with 
sufficiently large F statistics are removed.  This method terminates when no more 
variables are eligible for inclusion or removal. 

Table 3 presents a list of the paraphrase-based features that have contributed in a 
statistically significant way to their respective models.  To increase legibility of the table, 
we have replaced the names of the contributing features with digits as follows: BLEU = 
1; TER = 2; METEOR = 3, Wrd = 4, WnSyn = 5, O = 6; D2 = 7. 

 
Model Adequacy  Fluency  Average 
BP 1 4 5 1 7 6 5 1 4 5 6 7 
TP 2 4 5 2 7 6 5 2 5 7 6 
MP 3 4 5 3 7 6 3 7 5 6 
BTP 2 4 5 2 5 7 6 2 5 7 6 
BTMP 2 3 5 2 3 5 2 3 5 

 
Table 3. The features that have been statistically significant in building their 
respective models. (BLEU = 1; TER = 2; METEOR = 3, Wrd = 4, WnSyn = 5, O = 6; 
D2 = 7) 

 
The feature contributions make intuitive sense.  Generally speaking, correlation with 

translation adequacy is best when the model provides for more flexible word matching 
(found in METEOR and in paraphrase features involving stemming and synonymy) and 
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matches of higher order n-grams (BLEU, TER).  Features reflecting locality and the 
preservation of relative order (TER, D2, Order) improve predictions of fluency. 

5 Ongoing Work 
The results obtained thus far suggest that there is promise in the paraphrase-based 

approach to machine translation evaluation.  Further experimentation is needed to 
establish that improved correlations with human judgments are found when the model is 
used predictively, i.e., in scenarios where regression coefficients are fixed and the model 
is then applied to previously unseen data.  Our immediate research goals include the 
following:  

 
• Error analysis and collection of larger data sample.  We plan to conduct an error 

analysis in order to identify where our models improve upon the baselines and 
where they fail to bring about improvements, and to analyze in more detail the 
effects of each feature on the correlation with human judgments.  Larger and more 
varied datasets are also needed, since experiments in this study were limited to the 
output of three MT systems, all translation from the same foreign language, and to a 
rather small set of translations (347 per MT system). 

• Less direct modeling of human judgments.  An approach based on directly 
modeling human judgments has some limitations.  First, it requires a large training 
set of human-evaluated hypothesis and reference translations; second, such a set of 
training data would have to be updated often to reflect the changing population of 
MT outputs.  Therefore, we plan to explore (a) embedding paraphrase-detection 
techniques into a framework similar to that of Kulesza et al. (2004), in which a 
learning model is trained to distinguish between human-produced and machine-
produced translations, and requires a one time start-up cost to assemble a large set 
of manually evaluated MT outputs; and (b) implementing paraphrase-based 
modules in a fashion similar to the approach of (Banerjee et al., 2005). 

• An empirical study of paraphrase phenomena in MT system output.  It would 
be extremely informative to perform a quantitative analysis of paraphrase-related 
phenomena (informed by characterizations of paraphrase types, e.g. Dorr et al., 
2004) in the output of MT systems ― for instance, to investigate which phenomena 
tend to reflect mistranslations versus valid paraphrases when found in MT output. 

6 Conclusions 
This work proposes a novel paraphrase-based approach to automatic machine 

translation evaluation.  The idea is relatively simple: all machine-generated translations 
that are paraphrases of human references should be considered “good”.  The task of MT 
evaluation, therefore, becomes one of paraphrase identification.  Our experiments show 
that this is a promising approach to more realistic MT evaluation than existing techniques 
based on substring matches.  We demonstrate that a regression model incorporating 
paraphrase features can improve on standard MT evaluation baselines such as BLEU, 
METEOR, and TER in correlations with human judgments of adequacy and fluency. 
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